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A new multilevel methodology is developed in this study to pro-
vide a successful numerical simulation for the whole process of
flow transition in 3D flat plate boundary layers, including linear
growth, secondary instability, breakdown, and transition on a rela-
tively coarse grid with low CPU cost. For high-order accuracy, good
stability, and fast convergence, this approach uses a fourth-order
finite difference scheme on stretched and staggered grids, a fully
implicit time-marching technique, a semi-coarsening multigrid
based on the so-called approximate line-box refaxation, and a buffer
domain for the outflow boundary conditions. A new fine-coarse—
fine grid dissipation technigue was developed to capture the large
eddies and represent the main roles of small eddies to keep the
code running after the laminar flow breaks down. The computational
results are in good agreement with linear stability theory, secondary
instability theary, and some experiments. The computation also
reproduced the K-type and C-type transitions observed by labora-
tory experiments. The CPU cost for a typical case is around 2-9
CRAY-YMP hours. ® 1995 Academic Press, Inc.

1., INTRODUCTION

Numerical simulation of flow transition plays a very im-
portant role in the study of the flow instability, even though it
is limited by current computational resources. To date, most
numerical studies using direct numerical simulation (DNS) are
restricted to the temporal formulation (cf. [1-5]). They can
provide better resolution because their computational domain
is relatively small, but the results lack physically realistic repre-
sentation [11]. Although there have been some spatial studies
{cf. [6~11]), spatial DNS is still at its early age [12]. First,
most such approaches can predict oniy the early stages of
transition (pre-onset simulation) or fully developed turbulent
flow at low Reynolds number without a transition process.
Second, they tend to require high CPU cost, generally in the
range of 100-1000 CRAY-YMP CPU hours. The existing spa-
tial DNS codes usually blow up when the flow enters the
breakdown stage, since non-dissipative central differencing
cannot provide proper dissipation produced by eddies smaller
than the grid size.

The purpose of this study is to develop an efficient and
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accurate method to simulate the whole process of transition,
including linear growth, secondary instability, breakdown, and
transition, with relatively coarse grids and low CPU cost. Since
it is very difficult to capture all of the scales after the laminar
flow breaks down, the aim is 10 obtain the large eddies only
while representing the roles of small vortices by artificial dissi-
pation. The typical grid used here is 16 X 34 X 34 for each
T-S wavelength, with a CPU cost in the range of 2-9 CRAY-
YMP hours. The computational results show good agreement
with linear and secondary instability theory and experiments
by Saric et al. [17].

2. GOVERNING EQUATIONS IN
GENERAL COORDINATES

Considering the general transformation

x=x(§n L),
y=y&n ),
z=z(& n ()

then the 3D time-dependent incompressible Navier—Stokes
equations can be written as
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au + v W _ 0 ' 4 total flow into a steady base flow and a perturbation. Using
ag  am ol ) subscript 0 to denote the base flow variables, let
and uiy, y, 2, ) «uelx, y, 2) +uly, y, z, 1),
U(x’ y; Ze r) « U()(x, y! Z) + U('x’ yi Zv f)a (9)
1
U=Z@s+og+wh, &) P(x,y, 2, 1) <= Po(x, y. 2} + P(x, ¥, 2, 1),
1 where u = (i, y, w), U = (U, V, W). Noting that the base flow
] (ume vy + W), ©) itseif also satisfies the Navier—Stokes equations, we then obtain
1 the governing system for the perturbations:
=Wl T vi+wl), )

where u, v, w are velocity components; U, V, W are contravari-
ant velocity components; P is pressure; Re is the Reynolds
nuimber based on the free stream velocity U/, the viscosity
parameter v, and some reference length, for example (57 is the
displacement thickness of boundary layer at inflow),

J is the transformation Jacobian,
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N,
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e

and A, is the physical Laplacian operator transformed to the
computational (£, 7, {) space:
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This constitutes seven equations for the seven unknowns u, v,
w, U, V, W, and P.
The perturbation equations are obtained by decomposing the
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Combined with (5)—(7), this system also has seven equations
and seven unknowns for the perturbations.

For the flat plate flow, we use rectangular but stretched grids
obtained by a special but relatively simple mapping:

x=¢
y=y(n), (14)
=4
This yields
J=n,
G=4=1, (15

L= ==, =4L=§=0
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For our numerical simulation, we choose the transforma-
tion function

Yenax TN ,
M Yman Tmax — Tf)

y(mp = (16)

where y,, 15 the height of the computational domain in the
physical coordinate y, 1., is the height of the computational
domain in the computational coordinate , and o is a constant
that can be used to adjust the concentration of grid points. This
yields the inverse map
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Under the above mapping, the governing equations in the
perturbation form can be simplified:
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The transformed Laplacian operator in the computational space
is simplified as
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In the computational (£, 1, {) space, the grids are uniform.
Suppose u, v, wand I/, V, W are defined in terms of a staggered
grid in the computational space. Here, the values of P are
associated with its cell centers, & and I/ with centers of the cell
surfaces parallel to the (n, {) plane, v and V with centers of
the cell surfaces parallel to the (£ {) plane, and w and W with
centers of the cell surfaces parallel to the (£ 1) plane.

Second-order backward Euler differences are used in the
time direction, and fourth-order central differences are used in
space. For the details, see [14].

We can write the discretized governing equations symboli-
cally as follows (Fig. 1)

AEE”EE + AEHF; + Awuw -+ AWWMWW + ANN“NN-I— ANMN
+ A + Agstss + Apptipr + Apup + Agity + Appiizg
- Acuc + DWPWW + DwPW + DEPE - DCPC == S,,, (28)
Byrvge + Brvg + Bty + Bywbww + Bawtww + Byoy
+ Bsvs + BgsUge + BerUgr + Brt)e + Bpvg + BygUgs
— Beve + ExPys + EsPs -+ EyPy — EcPc=8,, (29)
CEEWEE + CEWE -+ waw + waWww + CNNWNN+ CNWN
+ Csws + Cggws + Crpwpp + Cowp T Cawip -+ CrpWig
— Cowe + FugPas + FaPy + FuPy —

FCPC = Sw, (30)

DUEEUEE + DUEUE + DUwa - DUCUC -+ DVVNVNN

+ DVNVN + DVSVS - DVCVC + DWFFWFF

+ DWWy + DWW, — DWW, = §,, (31)
As an illustration of the notation we use, relevant symbols for
the discrete &momentum equation are depicted in Fig. 1. The
coefficients and source term for the interior points of the discrete
&momentum equation (28} asscciated with u¢ are given as
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Here, superscripts rn and n — [ are used to indicate values at
previous time steps, and superscript # + 1, which indicates
the current time step, is dropped for convenience. Lower case
subscripts denote the approximate values of the v and w at
points where the associated values of 1 with capital subscript
are located (Fig. I).

All function values that are required at other than the canoni-
cal locations are obtained by fourth-order interpolations in the
computational space (see [14]).

The coefficients for the 7~ and {-momentum equations are
defined in an analogous way, and the discrete continuity equa-
tion is developed simply by applying fourth-order central differ-
ences to each term,

3. BOUNDARY CONDITIONS

At the inflow boundary, Benney-Lin type disturbaaces are
imposed:

u(0, v, z, 1) = Wyy(y)e ™ u' + uy( y)e =B (33)
where any and e, are the real frequencies of the disturbance and
B3 is a real constant that represents the spanwise wavenumber.

A no-slip boundary condition is applied at the solid wall.
Since the disturbances vanish at infinity, then the boundary
conditions at the far field can be specified as

ur, y— ®©,z,1) = (34)
Actually, we chose y = v, for the far field, which should be
much larger than the displacement thickness. Usually, we use
Ymax = J08F, where the disturbance is thought to be negligible.

For flat plate flow, no pressure condition is needed at all the
boundaries since a staggered grid is used.

Specification of the outflow boundary conditions is one of
the major difficulties in the spatial simulation of flow transition.
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FIG. 2. Extended computational domain.

In [13-15], we developed a very efficient multidomnain tech-
nique on a staggered grid (see Fig. 2), which eliminates all the
visible reflection in a very short buffer domain. For more detail,
see {14, 15].

For the flat plate-type flow, the two buffer functions are
specified as:

o - mm(%ii%/tmﬂn;kmmsfs%w
) 0= &= Lo
€~ L) 33)
b8 = L + 1 Loiging = &= Ly,
1 0=§¢= Lciginal »

and (27) is then changed to
—b(@{wa LA ”}- 36)
Re é/l 7]2 éaz TI)} a (
Here,

Re
C—de{Z(i 1, l}

and the resulting conditions for the buffered outflow bound-
ary are

gy Ve Ve . Wi W,
Ug= U An Ag A{ AL,
VE = ZVC - Vw, (37)
Wf_‘ = 2WC - Ww.
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4. APPROXIMATE LINE-BOX RELAXATION (ALB)

4.1. Approximate Box Relaxation (AB)

The basic idea behind the approximate box relaxation (AB)
approach is to schedule relaxation box-by-box, with the same
approximate cost as that of Gauss—Seidel relaxation. With a
2D uniform grid (Fig. 3) as an example, we first describe the
basic idea of AB.

The generic form of the discrete equations associated with
a box for the 2D uniform grids can be written as

PW*PC_

Abue -+ ASuy + ASuy + ASug - Abuc + o S (38)
Al + Abute + Abuye + Afug

- Afu + T s, (39)

BSv: + BGuy + BSuy + BSus — Bive + Bs *VPC =$,.. (40)
Blfuwe + Bluww + Blvwy + Bive

—Bloy+ L ‘-‘;yp Y=, (41)

”EA“X”C + ”NA"y”C = 0. (42)

Here, the superscripts represent the point at which the discretiza-
tion is centered. We proceed in the box-by-box process with
a few global point Gauss-Seidel relaxation sweeps on the mo-
mentum equations, changing # and v and holding P fixed. This
means that the four momentum equations (38)—(41) in the box

UNN -
uN Py UNE
N el N
UNW vy + 8o fUNE
uwW Py o —€ Fe+ AP lugt+e P VEE
—— 0" —= 0 — 07 -
IUW N o — & }1)5
Uus Ps USE
. R e} N s
vg

F1G. 3. Approximate box relaxation.
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phase are approximately satisfied. Now, proceeding by boxes
in some order, we perform distributed relaxation of the form:

o< U = &1,
g < ug + £,
Uee—Ue~ &, (43)
Uy Uy + &,

PC(——Pc+AP,

where the corrections are chosen to satisfy the discrete continu-
ity equation and four discrete momentum equations associated
with the box. Note that the old values of u, v, and P approxi-
mately satisfy the associated momentum equations, so we ob-
tain the system for the corrections &, &;, &, 0, and AP,

AP

(Agfh + Agsl) —=—=4Q, {44)
Ax

(Afer + Afie) — 0= 0, @5)
Ax

B8 + Bs) - 2L = ¢, (46)
Ay

B3, + BYS) - 2F <o, (a7)
Ay

€]+82+6]+&_;S (48)

Ax Ay

where

Ug — Uc | Uy — Ug
=~ + .
S ( Ax Ay )

Equations (44) and (45) yield

g _ AE — Af

g 0T ACC AL
(46} and (47) yield

5 L BLBE

& ' BE—BY

and together we have

_ BB Ay

Th= AZ+ Ablay Ax

0| @
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Therefore, (48) can be written as

£ + 81/050 + 51 + S]I'B(} =5

. 49
Ax Ay “9)
or
Ax Ay
The cormrections are thus given by
vo(l + 1) . (1 + 1/,80))
= -+ s
d S’"/( Ax Ay
& = &/Bo, (5D
e, = & " Yo,
g, = glayg,

and
AP = (Afg, + Afey) - Ax.
To simplify this scheme, note that, for the case At <€ 1, we have

At~ AE, BE~ B,

AL A, AL ® AL,
BY» By, BZ@ BY,
SO
o= 1,
Bo=1,
Yo = AylAx.
For most cases, we have
AE> AL, AL AR,
BY>BS, B:&>BY,

80 oy, g, and 7y, can be approximated in general by

A
Oy~ 25~ I,

é

BY
BU~B_E ls

Bf Ay
Yoo e R
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For general coordinates, the discrete momentum equations
can still be written in the same generic form as that for Cartesian
coordinates, but the continuity equation is changed to

UE'UC+VN*VC:
A€ A7

0. {52

The physical velocities « and v have the following relations
with the contravariant velocities U/ and V:

U=au+ by,

V=cu+dv.

This leads the discrete continuity equation to be wrilten as

agity + bplly — actic — bele 4 enliy + dyoy — cclic — devg _

AE An

G,

where the superscript ~ represents a point that is not located
at a canonical position and therefore requires interpolation.
Assuming that

(bFAﬁE - bcAﬁ() < (CIEALIE - acAuC),‘ (53)

(cxAdly — ccAlic) << (dyAuvy — deAug), (54)

then the corresponding correction equation can be approxi-
mated by

ares + Qe€) + dN52 + dcal —
Af An

S

Note that the defining relations for g, &., §,, and & can be
expressed in the same form as for Cartesian coordinates,

£y
—_ = ao’
£
8
= = B,
&
£
_ -y‘)’

1

and

5 = S”!/(GE/CYO + ac)vo " (dn!Bo + do) (55)

Af Ay

where ag, g, dy, and d, correspond to the mapping coefficients
between u, v and U, V.
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4.2, Approximate line-box relaxation (ALB) for 2D problems

AB usually works well for 2D problems, but frequently fails
to provide fast convergence for 3D problems with anisotropic
grids. The basic 1dea of ALB is to satisfy the continuity equation
and momentum equations for all boxes lying on one column
stmultancously. Figure 4 gives the distribution of corrections
in the (£ m) plane for the ALB. This kind of relaxation is very
useful when the grids are anisotropic, Assurning, for simplicity,
that ay = 8, = 1, then, according to Fig. 4, ALB solving the
discrete system (28)—(31) can be described as follows:

* Freezing P, U, V, W, v, and w, perform line Gauss-Seidel
relaxation on (28) over the entire computational domain
to obtain a new u.

= Freezing P, U, V, W, u, and w, perform line Gauss—Seidel
relaxation on (29} over the entire computational domain
to obtain a new v.

* Freezing P, U, V, W, u, and v, perform line Gauss—Seidel
relaxation on (30} over the entire computational domain
to obtain a new w.

* Use transformation (24)—(26) to obtain new U, V, and W.

*Forall j = 2, 3, .., n;, — | at once: change Ui_qny,
Uiramie Vicames Wiz, and Wiz, to satisfy the associ-
ated continuity equations, then update Py o that the new
U, V, W, and P, as well as the associated transferred «, v,
and w satisfy the three momenturm equations.

Yini—3 =0
]
Uiké- 5k 56‘__‘_’ P£8k0+ APy _}_»UH'% 6k tEs

Vi, b5~ 6

t
!
Vicxse— & | P{5k0+ AP _|WU.'+-;- 5&tes
Vigetéa—ds
e Jl —
U,'_% 4= 64‘_)#’ Apl'.;ko-P AP, ] U£+.l). 1% + €1
Vigs+ba—ds
$
]
Uigar—cs Fige b 8P | Ungartes
Vigp+da—dy
1
|
7 U,-_% 2 — €2 FPoor + APy Us+g 3k T €2
- o _
|— %
i T 0
¢ ¢

FIG. 4. Distribution of corrections in the (£, 5) plane.
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Since all of the u, v, and w have been previously relaxed,
and the U, V, and W are updated, we assume that Egs, (28)~
(30) hold exactly. Let €, 6, o, and AP represent the corrections
for U, V, W, and P, respectively. Thus, for cube ijk (see Fig.
4), the correction equations corresponding to (28)—(31) are

(i~ Uk (= 1k
(A(Hllz)ﬁx Mot T Al Ty v} &

— D" AP, =0, (56)

BELHHS — 84) — BN (82 ~ )
— EJ7"RAP =0, (5T)
(CHDR Dy + CHTB M, )0~ FRTW AP =0, (58)

(DUﬁﬁuz)jk + DU?}{-lmjk)Sj + (DWH’{HM] + DW%:—U;))U}'
+ va:j(’jiﬂm.k (5; - ajﬂ) - szfa—um (5—1 - 5;) = Sm,.]i,

J=23,..0—1, (59

where the superscripts represent the point at which the discretiza-
tion is centered. This system has 4(n; — 2) equations for 4(x;
— 2) variables. Unfortunately, coupling between the correction
variables makes the problem somewhat complicated. To develop
a simpler approximate system, define

@ = gl 5,

;= Gy b;.
Then Eq. (59) can be written in terms of the unknowns &; only:

E(DU?}imuﬁ DU(i{k—uzuk)wxj + (DVf{'}+nmk + DVHﬁ-lmk)
+ (Dwﬁfmz, + DWffﬁ-uz;)wzf]r% (60

. nyik _ i -
DV anu 6-1 — DViioinndin = S

Letting

a; = (DU 1py + DURE ey + (DVEL o + DVE_ 00

+ (DWltirsn + DWE )0y, {61)
b= “DV}{;}_,,,,Z,;C, (62)
G = ”'vaj(ﬁng)ks (63)
J=23 ..n—1,
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we then obtain the tridiagonal system

oy bz 52
¢ a3 b &
Cn-2 anj-z bni—Q ‘;nj—-l
L o e [ o]
i S’"{’}k ]
S’"i2k
- S ()
Min=1k
| m!’n“.*lkd

Thus, &,j = 2,3, ..., n; — 1, can be determined very efficiently.

The other velocity corrections are given by
& = wyd,
0= w8,
J=2,3 ,n— L
The U, V, and W are then updated on all cells in the i, k
n-line as
U(i+h‘2)jk “— U(i+1f2)jk + g,
U(i-l.'Z)jk e U{r‘)l!ll)jk — &,

W:'j(k+|f2) — ij(k+lf2) + T;,

ij(k—wz) ~ Wj(ﬁ—m) - o, (65)
J=2.3 ...m—1,
Vi'(jﬁle]k ~— Vi(j—lﬂ)k + 5,;—1 - 5},
Jj=34, ., 1 (66)
P is then updated via
P!" (——P,“ +AP,
ik ijk J (67)

J=23 - L

Line-box relaxation is efficient when Az = Ax, but degener-
ates in convergence when Az <€ Ax. In this case, we need to
use alternating line-box relaxation in both y- and z-directions,
or plane-box relaxation.
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5. SEMI-COARSENING MULTIGRID

For solving the large-scale algebraic systems arising at each
time step by the fully implicit scheme for 3D flows, we use a
multigrid method based on ALB described in the previous
section and a semi-coarsening strategy described below to as-
sure fast convergence. For simplicity of discussion, we consider
only the two-grid case.

We use a full approximation scheme (FAS) to accommodate
nonlinearities, A two-level FAS algorithm for an equation of
the form

Ligh =g (68)

may be described loosely as
(i) relax on Lig* = f*,
(i) solve L™ = L¥[H¢h + FP(f* — LAgh),
(iii) replace ¢" « " + [4,(p™ — [3F").

The notation we have introduced includes the difference opera-
tors L* and £, the restriction operators f3* (for the approxima-
tion) and I?* (for the residual), and the interpolation operator
I,

A full-coarsening strategy generally loses efficiency for prob-
lems that favor special coordinate directions {e.g., anisotropic
probiems). To overcome this limitation, we consider now a
special combination of semi-coarsening and line-box relax-
ation, The basic idea is to use line-box relaxation in one direc-
tion (say the 7-direction) and coarsening only in the other two
directions (&- and {~directions).

Full weighting restriction is again used, but now for transfer-
ring the residual from the fine to the semi-coarse grids. The
semi-coarsening stencils can be expressed as follows:

|

W= o

PR
Gl ol

IR, |:

TR, [

P e
b e
| ——
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- (69)

MR,

[ (PR N
" N [

r

MR,

1

These stencils can be explained geometrically as shown in
Fig. 5.
For the restriction of variables, a bilinear-based operator is

used. Its stencils are
}’ Iw): [

VTR [

Iwy: 3 31, I7P): [

R R
W

N
FNN T

[T

N
PN
| |

For semi-coarsening, the coarse to fine transfer operators are
based on linear interpolation:

] for Au® or [% ] for Aut,
]’ (7
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8
1] for Awh,
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e Al
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ojRs
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Pl
Gke

1

ﬂllh(Av): |:

s
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ojee  ofte

i1 forAw! or [
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The meaning of the above stencils is illustrated in Fig. 6.
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6. FINE-COARSE-FINE GRID DISSIPATION

Spatial DNS usually meets difficulties after the flow enters
the breakdown stage, where a shear layer develops and the large
vortices break down to small-scale vortices. The numerical

o =

Lt
o f

b

c

FIG. 5. Full-weighting restriction for (a) £momentum equation, (b} {-momentum equation, (¢) n-momentum and continuity eguations.
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Auws { where J3" is some linear restriction operator and J%, is some
¢ linear interpolation operator.
Define L = AB as some line segment containing five grid
£ g g
11‘ ‘]f points on the fine grid (see Fig. 7), and (with u, = 0 as-
£ b sumed) define
L ‘
Tl ax
) i a = P
* I
) AP gy Ay2h [l ax
5555555 ‘J_—_ﬁf._f_f_‘__h‘jﬁ_f_-ﬁ_.
! AP At as the amplification factor of a fing—coarse—fine mapping.
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) ]
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FIG. 6. Bilinear interpolation for {a) Az, (b) Aw, {¢) Av and AP (note
that AP and Av are not located in the same (£ {)-plane).

simulation will thus observe a huge energy burst, the distur-
bance velocity will be amplified by tens or hundreds of times
somewhere inside the flow field, and the code then blows up.
Apparently, this is not a physical phenomenon, but largely
caused by the lack of dissipation produced by smali-scale vorti-
ces. To keep the numerical simulation going, we developed a
fine—coarse-fine grid dissipation technique. To explain this
technique, first consider a 1D problem. We perform fine-to-
coarse grid restriction, and then coarse-to-fine grid interpolation
at each time step,

e = Iglhu?ld 2

uFew = [ghucs

A is the totai number of grid points in the entire domain, { is
the length of the entire domain, and K >> 1, which means that
there modes are either invisible on, or badly represented by,
the coarse grid. We can approximate a{K) by numerical integra-
tion for different modes:

FIG. 8. Amplification factor for different modes,
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Obviouwsly, a(l) = 0, im,, a(K) = 1.

Figure 8 clearly shows that this kind of grid mapping (fine to
coarse restriction and coarse to fine interpolation) significantly
damps high-frequency (K ~ 1), but has only minor etfect on
other modes (K < 1} and negligible effect on low frequency
modes (K —» 0).

For certain grids, the highest frequency that can be well
simulated is K = 2(N — 2)/{N — 1). The high-frequency modes
may generate higher frequencies, which cannot be simulated
by current grids and may cause the computation to fail. This
fine--coarse—fine grid dissipation damps the high-frequency
modes but protects the low frequency modes. Of course, we
do not want to eliminate the high-frequency modes, but we do
want to restrict their energy growth.

The actual procedure is given by the steps:

+ [sin(Km)| + +

%sin (2Km)

1. m, = [y,
20w =1 — &HuM + slhu..

Here, we choose
S=c- @+ v+ wh,

which is proportional to the perturbation kinetic energy with
proportionality ¢ = c{Ax, Ay, Az, At). Therefore, there is very
little damping to high-frequency modes when the perturbation
is very small. In this way, we successfully keep the code running
to simulate the whole process of transition: linear growth, sec-
ondary instability, breakdown, and transition. Note that the
large eddies play a much more imnportant role in flow transition
than the small eddies that correspond to high frequency modes.
We have to sacrifice these small eddies to the limited computer
resources. But the physics of transition and turbulence are still
simulated guite well because of the accurate representation of
lower frequency modes corresponding to the large eddies. This
technique actualiy adds artificial dissipation representing the
main roles of small eddies to avoid the huge numerical energy
burst. Choice of the dissipation weight § is somewhat ad hoc,

4 AxAvAz

= A

(w4 v+ wh),

where a i1s a constant (usually greater than 1), Optimization of
& should improve the performance further,

335
7. COMPUTATIONAL RESULTS

7.1. Comparison with Linear Stability Theory (LST)

To verify the accuracy of our approach, we compare our
results with linear theory by assuming a parallel steady base
flow and imposing a small disturbance at inflow. The base flow
158 now wylx, ¥) = ulxo, ¥), Volx, ¥) = wolx, y) = 0, where
u{xy, ¥) 1s the streamwise component of the Blasius similarity
solution at inflow, and the wall-normal component has been
set o zero to force an antificial parallel base flow.

Let Re = Re¥ = 900, Fr = 86 (w = 0.0774), and 8 = 0.1,
The Orr—Sommetfeld solution provides an eigenvalue o =
g + iog = 02169 — {0.00419. In LST, the disturbances are
assumed to be traveling waves, for instance, the streamwise
velocity can be expressed as

u = ge [ pY coslapx + Bz — wel)

— ¢t sin(agx + Bz — ay)], a2
where ¢ is the amplitude of the perturbation, and ¢y and ¢
are the respective real and imaginary parts of the eigenfunction
ohtained from LST.

A 194 X 50 X 18 grid, which includes a five T-S wavelength
physical domain and an one T-S wavelength buffer, is used.
The amplitude of the perturbation is set to £ = 5 X 107 rms,
which is measured as the maximum streamwise disturbance
velocity in the wall normal direction during one T-S period,
and the stretch parameter is ¢ = 4.25. The computational
domain is

x§ €(303.94,477.74],
y¢ €0, 501,

5 €1-31.42,31.42].

Semi-coarsening multigrid works well for this case. A 0.2
convergence factor (defined as Residual,../Residual,, is gener-
ally observed for each V (2, 2) cycle, which uses two relaxations
before and after coarse grid correction on each grid level. The
numerical reswlts are then compared with LST. Figure 9a de-
picts the perturbation amplification factor, max{|u(Re*)[}/max-
flu(RefH}, showing a good agreement with LST, and Fig. 9b
gives the contour plots of 2D streamfunction at different time
on the plane & = 9, showing no visible reflection at either the
outflow or the far-field. The profiles of the mms perturbation
velocity components at x* = 419.8 are given in Fig. 10, also
showing good agreement with LST.

7.2. Secondary Instability and Transition

Now suppose that the base flow Is not parallel to the solid
wall, but that it is, instead, the Blasius similanity solution, which
is widely used as the base flow for flat plate transition. A



336 LIU AND LIU

t=325.63

NS

N
£

t=487.39

o
=)

numerical result —
o LST result o SN 5‘\-\-@- i

A g

1=649.74
W R i =N
3 :

207 7 g’qo 705D 7ioo X, =303.9
e

o
D

mazifuf Ref}/mazifu(Re' )
&

@
i

o
L=
<

physical domain ! butfer domain

a b

FIG. 9. {a) Comparison of the perturbation amplification rate between numerical results and LST for the small disturbance case. (b) Contour plots of 2D
streamfunction at r = 325.03, 487.39, 649.74 for the k = 9 plane, Contours from —~0.006 to 0.006, contour level = 4,286 X 10~ Re§ = 900, w = 0.0774,
B =101, g, =5 X 107 rms; grids 194 X 50 X 18.

Benney-Lin type disturbance is imposed on the inflow, perscript (k) denotes different velocity components. The follow-

. o ing is a typi hose:
w0, v, 7, 1) = Real{es, @ y)e s + ey, P, ( v)eor+its ing is a typical case we chose

+ 8y B (y)e i), Ref =900, Fr =86 (wy = wyy = 0.0774),

where ¢, y) and &y y) coirespond respectively to 2D and B=01 ym =50,
3D eignsolutions of the Orr—Sommerfeld equation and the su- any = 0.2229 — 0.004514,

0.0 0.02 0.04 0.06 c.08 0.000 0006 0.010 0.015 0.020
u percent rms v percent rms

nwmertcal results

10 1

" & & LST results
Re'=1042.6
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FIG. 10. Comparison of the numerical apd LST velocity profiles at Re* = 1042.6. Re; = 900, w = 0.0774, 8 = 0.1, g, = 5 X 107 rms; grids 194 X
50 % 18,



MULTIGRID MAPPING AND BOX RELAXATION

sy = 0.2169 — 0.00419i,
Eqy = 003, Eqgr & 0.0],

xF=3039, x% =35936.

The grid we used here is 162 X 34 X 34 (including an 8 T-S
wavelength physical domain and.a 2 T-S wavelength buffer
domain), and the stretch pararmeter is o = 3.75. The fully
implicit scheme we used in this work has much better stability,
which is important for some applications, such as wall suction
and blowing. However, for accuracy reasons, we set the time
step to zig of the 3D T-S period. :

It took around 9 CRAY-YMP CPU hours for the code to
run 30 T-S periods. Figure 11 depicts the contours of the total
vorticlty magnitude at different times in the plane y& = 0.1123,
which clearly show the process of A-wave formation, the peak
and valley splitting, and vortex breakdown. It is found that the
breakdown begins at the second peak when the A-wave is

£=3T

t=4T

t=5T

t=6T

E=7T

t=8T

FIG. 11.  Contour plots of the total vorticity magnitude obtained on a 162
X 34 X 34 gird at different times on the plane y§ = 0.1123, Re* = 900,
Fr = 86, B = 0.1, g4 = 0.03, &5y, = 0.01. Contour interval is 0.02; flow
direction is from left to right.
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t=2T

t=3T

=47

t=5T

t=p6T

t=7T

t=RT

23 =564.5

FIG. 12. Contours plots of spanwise vorticity on the plane z§ = 0 at
different times, Re* = 900, Fr = 86, 3 = 0.1, g5, = 003, £34 = 0.01. Contour
interval is 0.02; flow direction is from left to right.

intensified to a certain degree and the shear flow develops.
Vortex breakdown further contaminates ihe flow field, leading
10 a transition process. The patterns of relative helicity (defined
as v X /(v - |€Y)), where v is the total velocity vector, and
0 is the vorticity vector) at + = 30T are very similar to those
at + = 7T, which suggests that the process of transition has
been built up after t = 77 in this grid. Less than 2 CRAY-
YMP hours were needed to simulate the transition process for
a 162 X 34 X 34 grid and seven T-S periods. Figure 12 depicts
the spanwise vorticity on the plane z§ = O at different times,
which clearly show the process of vortex breakdown and the
formation of multiple spikes. The appearance of random mov-
ing small vortices after breakdown provides a clue that the flow
no longer maintains its laminar status.

We also averaged u and v on the plane zF = 0 at different
streamwise positions after the transition process was built up.
Figure 13 depicts the difference between the & profile and the
Blasius similarity solution at x§ = 537, which quaiitatively
agrees with the experimeatal results given by Suder, O’Brien,
and Reshotko [16]. It also shows that the #-profile in the transi-
tion zone Is sharper than those of the Blasius solution, and the
wall stress 7= u(du/dy) is then larger than that of laminar flow.
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FIG. 13. Comparison between #-profiles and the Blasius profile at xif =
537, z¥ = 0, Ref = 900, Fr = 86, 8 = 0.1, g5, = (.03, g5, = 0.01

Figure 14 gives the 0-profile. T is always positive in a laminar
boundary layer, but our computational results show that 0 varies
from positive to negative and then becomes positive again. This
15 a typical sign that the flow is experiencing transition,

We also tested another case:

Ref =732, B =0.2418,
@y = 0.0909, @, = 0.04545,
Yo = 75, o= 23.75,
o = 0.2490 — 0.003511,
a4 = 0.1103 + 0.006504,
1= 0015, £34= =0.005,
Xo = 2482, Xy = 4375,

The grid we used here is again 162 X 34 X 34 (including an
eight 2D T-S wavelength physical domain and a two 2D T-§

30.0

20.0 l 1
y ’
100} \
oo > - ]
300.0 400.0 500.0 600.0

FIG. 14, Time-averaged o-profiles at zff = 0, xf = 304, 362, 421, 479,
and 337, Reg’ = 900, Fr = 86, 8 = 0.1, ez, = 0.03, &34 = 0.01.
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z

-12.99 .
£y = 24T.44
z

FIG. 15,

74 = 47451

Contour plots of the total vorticity magnitude of subharmonic

transition obtained on a 162 X 34 X 34 pgird at different times on the plane
yi¥ = 0.237. Re} = 732, B = 02418, ey, = 4.015, &5, = 0.005. Contour
interval 1s 0.0135; flow direction is from left to right,

FIG. 16. Contour plots of perturbation vorticity magnitude on the plane
J=2atr= 40655 (a) a = 075, (b) @ = 2, (c) ¢ = 10, Ref = 122177,
ey = 0.01, &3, = 0.005, At = 0.3078, grids 162 X 34 X 18 (9 T-§ wavelengths
physical domain and 1 T-8 wavelength buffer).
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FiG:. 17. Three-dimensional contour plots of relative helicity for the fundamental breakdown case,

wavelengths buffer domain) and one 2D T-S period is divided
imto 150 time steps. Subharmonic transition can be very clearly
observed in Fig. 15.

The effect of choosing a different a on the fine—coarse—fine
dissipation function is shown on Fig. 16. It is clear that if a
is too small, the perturbation may be overamplified and the
computation may blow up. In Fig. 16a, we choose a = 0.75,
and the computation terminated around ¢ = 7 T-§ periods.
However, if a is too large, the perturbation is so seriously
smoothed that no laminar flow breakdown or turbulence can
be observed. Figure 16¢ (¢ = 10) depicts this kind of behavior.

Two cases with relatively large computation domains are
then employed to simulate the whole process of transition in
a flat plate for comparison with experiments by Saric et al.
[17]. The imposed data is obtained from the experiments by
Saric er al. [17). Here, we assume that U, = 75 m/s and v =
15 X 10™°m¥/s.

Fundamental Breakdown. The first case is for simulating
the tundamental breakdown process. The inflow boundary posi-
tion is set to Ref = 1221.77, and we let w,; = wy, = 0.0928,
B = ag, = 0.2451, and ag,, = 0.2690. The computational
domain is restricted to

xa“ € [xy, x5+ 18441,
yi € [0,50],

7§ € [—25.635, 76.9006],

where A,y is the 2D T-§ wavelength at inflow (the T-S wave-
length A varies when the base flow is non-parallel). The stretch
parameter o = 4.05. Here &,y = 0.0056 and &;,. = 0.0004,
making the total amplitude of the disturbance at inflow 0.45%
rms. The grid we used here is 290 X 34 X 30, and the time
step s set to 35 of the 2D T-S wave period. It takes around 9
CRAY-YMP CPU hours for the code to run 20 T-8 pertods.
Figure 17 depicts the 3D contours of the relative helicity,
which shows that the occurrence position of the A wave is

almost the same as that obtained by Saric et /. (to compare it
with the experiments, all thet labels in the following pictures
have been interpreted to those used by Saric et al. [17]).

The location of a transition is defined as the position where
the sign of du/dx at fixed y first changes from negative to
positive. At j = 2, the above phenomenon occurs at x¥ = 646,
which is equivalent to x = 1.579 m in the laboratory experiment,
or Res = \/}{e_x = 868, The normalized maximum perturbation
velocity ampiitude as a function of Re; is given in Fig. 18,
showing good agreement with the experiments.

Subharmonic Breakdown. The second case is subharmonic
breakdown. The inflow position is still the same as fundamental
breakdown, but the parameters are changed according to the ex-
periment:

Rey = 122177, B=10.178,
wpy = 0.0928, s, = 0.0464,
oy = 0.268986 — 0.00871657/,

AT T T T T T r —
1001 ]
80 F Numerical results ]
r 4 o Experiments of Saric et al. .41
o sof ’j
J
B
B) J
an] T
20 7]
L i
of B ‘ 1
800 700 800 200 1000
Re'/®

FIG. 18. Amplitude as a function of Re;s with experimental results of Saric
et al. {17].
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FIG. 19. Three-dimensional contour plots of relative helicity for the subharmonic breakdown case.

o, = 0.12965 — 7.831 X 10744,
£y = 0.0030, £;, = 0.000125.

The computational domain is then changed to

x5 € D, xp + 21 Asu],
yi €[0,50],

78 € [—35.3, 105.9],

and the stretch parameter o = 4.15,

We use a 338 X 34 X 26 grid, which includes a twenty 2D
T-S wavelength physical domain and an one 2D T-S wavelength
buffer. Ten CRAY CPU hours are required to run twenty 2D
T-S periods. Figure 19 depicts the 3D contours of relative
helicity at ¥ = 207, showing clearly the staggered swucture of
the A waves. The transition location measured at j = 2 and

100 :

—

B0l Numerical results -

¢ ¢ Experiments of Jaric et al.

80
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FIG. 28, Comparison of normatized perturbation velocity amplitude ob-
tained at & = 0.4 as a function of Re; with experimental results of Saric eral. [17].

k = 13 is x§ = 756, which converts to x = 1.847 m or Re; =
961. Figure 20 gives the comparison of normalized amplitude
of perturbation velocity as a function of Re;, obtained at u =
0.4, also showing good agreement with the experiment by Saric
et al. [17].

There is really a lack of reliable experimental data for transi-
tional flow that can be used to judge the computational results.
Also, we need finer grids to obtain better resolution for poston-
set flow. Thus, at those coarse gnd levels, we must sacrifice
small eddy resolution. Nevertheless, the results apparently show
physically correct simulation for the whole process of flow tran-
sition.

The running time of the code is around 22 ps/grid-point/
time-step (equivalent to 5 us/grid-point/iteration) on a single
YMP CPU, and the memory requirement is 34 words/gnid-
point.

8. CONCLUDING REMARKS

* Fully implicit time-marching and fourth-order finite differ-
ence schemes on stretched and staggered grids provide
enough accuracy to simulate preonset transitional flow on
a relatively coarse grid. Computational results agree with
linear stability theory, secondary instability theory, and
some experiments.

Approximate line-box relaxation with semi-coarsening
multigrid is very efficient for solving 3D Navier-Stokes
equations.

* Fine—coarse—fine grid dissipation techniques successfully
maintain the spatial DNS code simulation of the whole
process of transition before and after laminar flow break-
down. The current spatial DNS code is able to reproduce
the whole process of K-type and C-type transition observed
by Klebanoff et a/. [18] and Kachanov et al. [19].

* Simulation with relatively coarse grids can still provide
qualitatively correct prediction for transitional flow. It
shows that the large eddies play the dominant role in the
process of flow transition.
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